Person Re-Identification Based on Two-Stream Network With Attention and Pose Features
نویسندگان
چکیده
منابع مشابه
Harmonious Attention Network for Person Re-Identification
Existing person re-identification (re-id) methods either assume the availability of well-aligned person bounding box images as model input or rely on constrained attention selection mechanisms to calibrate misaligned images. They are therefore sub-optimal for re-id matching in arbitrarily aligned person images potentially with large human pose variations and unconstrained auto-detection errors....
متن کاملPerson re-identification with fusion of hand-crafted and deep pose-based body region features
Person re-identification (re-ID) aims to accurately retrieve a person from a large-scale database of images captured across multiple cameras. Existing works learn deep representations using a large training subset of unique persons. However, identifying unseen persons is critical for a good re-ID algorithm. Moreover, the misalignment between person crops to detection errors or pose variations l...
متن کاملPerson re-identification by pose priors
The person re-identification problem is a well known retrieval task that requires finding a person of interest in a network of cameras. In a real-world scenario, state of the art algorithms are likely to fail due to serious perspective and pose changes as well as variations in lighting conditions across the camera network. The most effective approaches try to cope with all these changes by appl...
متن کاملGaussian Descriptor Based on Local Features for Person Re-identification
This paper proposes a novel image representation for person re-identification. Since one person is assumed to wear the same clothes in different images, the color information of person images is very important to distinguish one person from the others. Motivated by this, in this paper, we propose a simple but effective representation named Gaussian descriptor based on Local Features (GaLF). Com...
متن کاملThree-Stream Convolutional Networks for Video-based Person Re-Identification
This paper aims to develop a new architecture that can make full use of the feature maps of convolutional networks. To this end, we study a number of methods for video-based person re-identification and make the following findings: 1) Max-pooling only focuses on the maximum value of a receptive field, wasting a lot of information. 2) Networks with different streams even including the one with t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2935116